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Linear Filtering 

By Ralph Shapiro 

Abstract. A simple linear smoothing operator of general order p is constructed for dis- 

cretized functions. It is particularly suited for problems in numerical integration where 

it is necessary or desirable to suppress two-grid-interval waves. The operator is ideal in 

the sense that for the class of damping operators of order p, which remove two-grid- 
interval waves without changing the phase of any wave component, this operator pro- 
duces the least damping of the amplitudes of all other waves. 

1. Introduction. The avoidance of nonlinear computational instability in numeri- 
cal integrations of finite-difference approximations of systems of nonlinear partial dif- 
ferential equations, such as those arising in fluid dynamics, often requires the use of 
smoothing. The smoothing may be implicit in the finite-difference procedure or explicit 
as a modification of the differential equation. In either case, repeated application of 
the smoothing operator may produce serious damping of physically significant wave 
components. To minimize such degradation of the solution, it is desirable to limit the 
smoothing as far as possible to those wave components most affected by instability, 
that is, the high frequency or high wave number components. One way of accomplish- 
ing this result is to use a fmite-difference operator which avoids implicit smoothing as 
far as possible and to incorporate a highly scale-dependent explicit smoothing operator. 
The linear filtering operator discussed below was designed for this purpose. 

2. Smoothing Operator. Let f(x) represent some function of time or space in 
one dimension, integrable in the finite domain - d < x < d, and let f(xi) = fi for dis- 
crete values of x such that xi = iAx where i is an integer and Ax > 0 is such that 
2d/Ax is an integer. We define the simple three-point symmetrical operation 

(1) f0(l) = 
1/4(fi 1 + 2hi + fi+1) =(1 + 62 14)fi, 

where we have scaled the interval (- d, d) so that Ax = 1, and where fit = (i+ 1,/2 - fi / 

f(xi) can be expressed in terms of a sum of Fourier components of the general 
form An cos n(xi - pPn) where An is the amplitude of the wave component with wave 
number n (n = 27T/X, where X is the wavelength of the component), and oPn is the 
phase of the component. If An is the nth component of fi, and AO1) is the nth com- 
ponent of fil), then 

(2) A('1) = [1 - sin2(nAx/2)]An. 

Thus, the operator (1 + 62/4) defined in (1) damps the amplitude of each of the 
Fourier components of 1i by the factor [1 - sin2(nAx/2)]. This factor is called the 
amplitude response function of the operator (1). 
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It is apparent from (2) that the operator represented by (1) removes the shortest 
resolvable wave component (period or length 2Ax) and preserves the phase of the dis- 
cretized function fi. However, even relatively few applications of the operation (1) will 
produce considerable damping of components 5 to 10 times this length (see Table 1 for 
p = 0). To maintain the desirable properties of (1) and yet avoid appreciable damping 
of longer wave components, Shapiro [3] suggested a higher order operator whose 
amplitude response is 

(3) Rk(n) = 1 - sin2k ot 

where k = 21, j is any nonnegative integer, and where oa = nAx/2. For any order k, 
the operator represented by (3) is constructed by convolving (1) with a sequence of 
(k - 1) three-point symmetrical amplifying operators, comparable in form to (1). 

If h(k) is the operator whose amplitude response is Rk then 

f(l) = (1 + 52 

f!2) = (1 _62/4)(1 + 52/4)fi, 

(4) -) = (1 + 64/16)(1 - 54/ 

f(k) = [1 + (6/2)k] [1 - (612)k]ft. 

It was shown in [3] that such operators, for any order k, remove 2Ax waves completely 
but minimize the damping of all longer wave components. Such high order operators 
have been adapted for use in numerical models of the large-scale atmospheric circulation 
where they approximate the characteristics of a highly scale-dependent nonlinear diffu- 
sion in the differential equation (Shapiro [4], Hunt [1] and [2]). The disadvantage of 
these operators is that they are defined only for integer values of j. Since the number 
of points in the combined operator is (2k + 1), this means that only operators of 3, 5, 
9, 17, . . . , (1 + 21+1) points are defined. There are many applications in which oper- 
ators of an intermediate size would be useful, as, for example, when applying the opera- 
tor at gridpoints approaching a boundary. This disadvantage can easily be overcome by 
a modification suggested by E. Knighting, G. Corby and A. Gilchrist (personal commun- 
ication). Their approach is to construct the higher order operator by using a truncation 
of the infinite series formally representing the inverse of (1 + 62/4). 

The inverse of (1 + 62/4) is given by the infinite series 

(5) (1 + 62/4)-1 = 1 - (6/2)2 + (6/2)4 - (6/2)6 + 

It is obvious that if we operate on f/i) with any finite truncation of the series (5) 
we can restore the amplitude of any wave component (not specifically eliminated by the 
operation (1)) as closely as we wish. Thus, 

(6) f(P+i) - [1 + (6/2)2] [1 - (6/2)2 + (6/2)4 + + (- 1)P(6/2)2P]f1 

indicates a restoration of fi) to the order p and yields an operator with 2p + 3 terms. 
If we expand (6), we find 



1096 RALPH SHAPIRO 

(7) f/P+1) = [1 + (- 1)P(6/2)2p+2]f1, 

where p = 0, 1, 2, 3,. 
Since the stencil for 52qff for any integer q is given by the binomial coefficients, 

the stencil for f.(P+l) can be obtained directly. That is, 

(8) 1)q'q\ q-1 .2q\ 
(8) 6 q f i 

= 
(_-Il )q(q)t? + E(- l) Ifi [i+(q-i) + fi-(q-j)], 

where (m ) = n!/(n - m)!m!. Thus, 

f(P+1) = (122P+2) + f 
+ fi 

(9) + [(+ 1)P/22P+2] E( l)i(P )[ti+(l+P-i) +fi-(+P-j)I. 

Rp+,' the amplitude response function for the operator (9) is obtained from (6) 
by making use of the fact that the Fourier representation of the operator 52 is 

(- 4 sin2 a). Therefore, 

(10) R+ = Jf(P+1)1fjj = (1 -sin2 o)(1 + sin2 o? + sin4 Ca + + sin2 P a). 

Consequently, 

( 1) Rp+R 1 = 1- sin2P+2 az. 

For those values of k = p + 1 = 2i, Eqs. (11) and (3) and their corresponding opera- 
tors are identical. It should be noted that Eqs. (10) and (11) could have been obtained 
directly from (2) by operating on (1 - sin2 a) with its inverse. 

It is obvious from (11) that Rp+1 is restricted such that 1 > Rp+1 > Rp > 0. 
Furthermore, we shall prove that Rp + 1 is the amplitude response function which for any 
p yields the maximum restoration of amplitude of each wave component damped by 

f/1) without amplifying any component beyond its original value and without changing 
the phase of any component. 

TABLE 1. Values of the Amplitude Response, Rp+1 = 1 - sin2P+2 a 

for Various Orders p, for Various Wavelengths X 

p 
A/Ax 0 1 2 3 4 5 

2 0 0 0 0 0 0 
3 0.25000 0.43750 0.57812 0.68359 0.76270 0.82202 
4 0.50000 0.75000 0.87500 0.93750 0.96875 0.98438 
6 0.75000 0.93750 0.98438 099609 099902 099976 
10 0.90451 0.99088 099913 099992 099999 1.00000 
1 5 0.95677 099813 0.99992 1.00000 1.00000 1.00000 
20 0.97553 099940 099999 1.00000 1.00000 1.00000 
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THEOREM. Given 1 > Rp *+ > 0 where R *+ has the form p+1~~~ 

R * += (1- sin2 a)P=(1- sin2 a)(l +A1 sin2 a +A2 sin4 a +*- +Ap sin2P a) 

where AJ > 0, then Rp+I > RZ*+i for any p. 
Proof We are given 1 = (1 - sin2 oa)(I - sin2 a)- 1 >RR = (1 - sin2 a)P* 

>0. Furthermore, from (11) we have (1 - sin2 )-1 = Pp/(I - sin2P+2 a), where 

Pp = I + sin2 ?t + sin4 c? + * * + sin2P o. Therefore, we have 1 > (Pp*/P XI-sin2P + 2a) >O. 
If for any p the ratio Pp*/Pp < 1, then Rp+1 > Rp*+ 1. But P*/Pp > 1 is not permitted 
for any p since if it were, then for some sufficiently small sin2 a, the product 

(P;/P,)(1 - sin2P+2 a) would exceed unity. 
Some notion of the efficiency of f(P +1) can be obtained from Table 1 which 

lists the values of RP+1 for waves of various lengths for increasing values of p. The 
stencils for f/PP+1) for values of p up to 9 are given in Table 2. Smoothing in more 
than one dimension can easily be performed by applying the one-dimensional operator 

(9) separately in each dimension. Although the operator f(P + 1) was designed for use 
where repeated smoothing applications are required, it may also find more general use 
as an efficient and highly scale-dependent filter. 

TABLE 2. Stencils for f.(P ) for Various Values of p 

p f1 fil? f1 2 fi?3 fi?4 fi? s fgi 6 fi ?7 -i?8 f1 ?9 fi lo 

0 1/22 (2 1) 

1 1/24 (10 4 - 1) 

2 1/26 (44 15 - 6 1) 
3 1/28 (186 56 -28 8 - 1) 
4 1/210 (772 210 - 120 45 - 10 1) 
5 1/212 (3172 792 - 495 220 - 66 12 - 1) 

6 1/214 (12952 3003 - 2002 1001 - 364 91 - 14 1) 
7 1/216 (52666 11440 -8008 4368 - 1820 560 - 120 16 - 1) 
8 1/218 (213524 43758 - 31824 18564 - 8568 3060 - 816 153 - 18 1) 
9 1/220 (863820 167960 - 125970 77520 - 38760 15504 - 4845 1140 -190 20 - 1) 
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